Número especial 13 (Diciembre, 4-II)

How are Linear Algebra concepts learned?

Asuman Oktaç Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo.
María Trigueros Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo.
Disponible en: I

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.

Resumen: En este trabajo se presentan los resultados de un proyecto de largo alcance en México cuyo propósito consiste en profundizar en la forma en que los estudiantes universitarios aprenden el álgebra lineal. Para ello se definen como metas del proyecto proporcionar un análisis teórico de las construcciones involucradas en los distintos conceptos de álgebra lineal utilizando la teoría APOE; validar dicho análisis para cada concepto mediante investigación empírica enfocando la atención en los distintos conceptos que la componen y en las relaciones entre ellos y, con base en los resultados obtenidos, hacer sugerencias didácticas que contribuyan a una enseñanza fundamentada en la investigación. En particular se presentan en este estudio los resultados obtenidos para los conceptos de espacio vectorial, transformación lineal, base y sistemas de ecuaciones lineales.
Palabras clave: Álgebra Lineal, teoría APOE, construcciones mentales.

Asuman Oktaç Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo.
Departamento de Matemática Educativa, Cinvestav-IPN, México.
María Trigueros Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo.
Instituto Tecnológico Autónomo de México, Departamento de Matemáticas, México.

Recepción: Mayo 26, 2009
Aceptación: Noviembre 9, 2009

Abstract: This paper presents the results obtained so far in a long term project developed in Mexico with the purpose of studying in depth students' constructions when they study Linear Algebra at the university level. The goals of the project consist in developing theoretical analyses about the constructions involved in the learning of the different Linear Algebra concepts using APOS theory; validating those analysis by means of empirical research focusing on specific concepts and relationships between them; and making didactic suggestions that can contribute to the teaching of this subject. In particular we present in this study the results obtained for the following concepts: vector space, linear transformation, basis and systems of linear equations.
Keywords: Linear Algebra, APOS theory, mental constructions.

Résumé: On présente dans cet article les résultats d'un projet de long terme développé au Mexique. Le propos du projet consiste en approfondir sur les constructions des connaissances liées à l'Algèbre Linéaire par les étudiants universitaires. Pour accomplir cet objectif, les buts particuliers du projet consistent en développer un analyse théorique des différents concepts de l'Algèbre Linéaire en termes de la théorie APOS; valider l'analyse par moyen de la recherche empirique centrée sur les différents concepts de l'Algèbre Linéaire et ses relations et, utiliser les résultats obtenus pour proposer des suggestions didactiques pour les enseigner. En particulier on présente ici les résultats obtenus pour les concepts d'espace vectoriel, transformation linéaire, base et systèmes linéaires d'équations.
Mots clés: Algèbre Linéaire, théorie APOS, constructions mentales.

Resumo: Neste trabalho se apresentam os resultados de um projeto de longa duração no México cujo propósito consiste em aprofundar na forma em que os estudantes universitários aprendem a álgebra linear. Para tanto se definem como metas do projeto proporcionar uma análise teórica das construções envolvidas nos distintos conceitos de álgebra linear utilizando a Teoria APOE; validar referida análise para cada conceito mediante pesquisa empírica focando a atenção nos distintos conceitos que a compõe e nas relações entre eles e, com base nos resultados obtidos, fazer sugestões didáticas que contribuam a um ensino fundamentado na pesquisa. Em particular se apresentam neste estudo os resultados obtidos para os conceitos de espaço vetorial, transformação linear, base e sistemas de equações lineares.
Palavras-chave: Álgebra linear, teoria APOE, construções mentais.

Licencia Creative Commons

Todos los artículos publicados en Relime están bajo la

 Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.  

23 volúmenes, 66 números regulares, 3 números especiales y 388 artículos en total

esenfrdeitptru
REVISTA LATINOAMERICANA DE INVESTIGACIÓN EN MATEMÁTICA EDUCATIVA – RELIME,
es la publicación de investigación oficial del Comité Latinoamericano de Matemática Educativa A. C. Editada por el Colegio Mexicano de Matemática Educativa, A.C., calle av. Instituto Politécnico Nacional, 2508, Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, C.P. 07360. Tels. (52) + (55) 57-47-38-00 ext. 6043 Dr. Ricardo Arnoldo Cantoral Uriza, (52) + (55) 57-47-38-00 ext.6057 Dra. Daniela Reyes Gasperin, (52) + (55) 57-47-38-19 Susana Gómez Vargas, (52) + (55) 57-47-38-00 ext 6012 Dra. Gisela Montiel Espinoza, (52) + (55) 57-47-38-00 ext.6008 Ing. Martha Maldonado Rosales.
Reservas de Derechos al Uso Exclusivo, No. 04-2016-110914351000-102, con ISSN: 1665-2436, para el formato impreso; y No. 04-2016-110413025500-203, con e-ISSN: 2007-6819, para el formato digital; otorgados por el Instituto Nacional del Derecho de Autor. Derechos Reservados © Colegio Mexicano de Matemática Educativa, A.C. RFC: CMM 040 505 IC7. Publicación cuatrimestral. Se publica en los meses de marzo, julio y noviembre, con el financiamiento del Clame. 
Impresa por Editorial Progreso, S.A. de C.V., Sabino No. 275, Col. Sta. María la Ribera, C.P. 06400, Delegación Cuauhtémoc, México, CDMX.
Las opiniones expresadas por los autores no necesariamente reflejan la postura del editor de la publicación
Todos los artículos publicados en Relime están bajo la Licencia Creative Commons