Artículos
Vol. 7 N.º 2 (2004): Julio
INTRODUÇÃO A ETNOMATEMÁTICA NA MESOAMÉRICA
Mathematics Department Chapman University One University Drive Orange, CA 92866 U.S.A.
-
Submetido
-
dezembro 22, 2024
-
Publicado
-
2004-07-31
Resumo
O propósito deste artigo é identificar as similaridades entre os sistemas numéricos das culturas olmeca e asteca, considerando os referenciais teóricos da etnomatemática e a difusão cultural na Mesoamérica. Para seu desenvolvimento, o texto delinea os limites geográficos da Mesoamérica, expõe uma discussão sobre a atividade cultural em tal região antes da chegada dos espanhóis, descreve os sistemas numéricos dessas duas culturas precolombianas e situa a olmeca e a asteca no continuo temporal e cultural daquele local. Por último, se formulam algumas conclusões sobre o processo de difusão cultural na Mesoamérica.
Referências
- Ascher, M. (1991). Ethnomathematics: a multicultural view of mathematical ideas. Pacific Grove, California, USA: Brooks/Cole Publishing Company.
- Begle, E. G. (1973). Some lessons learned by SMSG. The Mathematics Teacher (march), 207-214.
- Bernal, I. (1975). Mexico before Cortes: art, history and legend. Garden City, New York, USA: Anchor Books.
- Cajori, F. (1928). The early mathematical sciences in North and South America. La Salle, Illinois, USA: The Open Court Publishing.
- Caso, A. (1965). Zapotec writing and calendar. En Handbook of Middle American Indians (Vol. 3, pp. 931-947), Archaelogy of Southern Mesoamerica (part 2). Austin, Texas, USA: University of Texas Press.
- Coe, M. D. (1995). Mexico: from the olmecs to the aztecs. New York, USA: Thames and Hudson.
- D’Ambrosio, U. (1985a). Sociocultural bases for mathematics education. Campinas, Brazil: UNICAMP.
- D’Ambrosio, U. (1985b). Ethnomathematics: what might it be? Newsletter 1 (1), 2.
- D’Ambrosio, U. (1985c). Ethnomathematics and its place in the history and pedagogy of mathematics. For the Learning of Mathematics 5 (1), 44-48.
- D’Ambrosio, U. (1997). Foreword. En Arthur B. Powell y Marilyn Frankenstein (Eds.), Ethnomathematics: challenging eurocentrism in mathematics education (pp. XVI-XXI). Albany, New York, USA: State University of New York.
- D’Ambrosio, U. (1998). Ethnomathematics: The art or technic of explaining and knowing. Las Cruces, New México, USA: ISGEm (traducción del portugués por Patrick Scott).
- D’Ambrosio, U. (2001). What is ethnomathematics and how can it help children. Teaching Children Mathematics 7 (6), 308-310.
- Eglash, R. (1999). African fractals: modern computing and indigeneous design. New Brunswick, New Jersey, USA: Rutgers University Press.
- Fasheh, M. (1997). Mathematics, culture, and authority. En Arthur B. Powell y Marilyn Frankenstein (Eds.), Ethnomathematics: challenging eurocentrism in mathematics education (pp. 273-290). Albany, New York, USA: State University of New York.
- Ganguli, S. (1932). The indian origin of the modern place-value arithmetical notation. The American Mathematical Monthly 39 (may), 251-256.
- Gerdes, P. (1999). Geometry from Africa: mathematical and educational explorations. Washington, DC, USA: The Mathematical Association of America.
- Harvey, H. R., & Williams, B. J. (1993). Dechiperment and some implications of aztec numerical glyphs. En Michael P. (ed.), Native American Mathematics (pp. 237-260). Austin, Texas, USA: University of Texas Press.
- Joseph, G. G. (1991). The crest of the peacock: non-european roots of mathematics. London, England: Penguin Books.
- Joseph, G. G. (1997). Foundations of eurocentrism in mathematics. En Arthur B. Powell y Marilyn Frankenstein (Eds.), Ethnomathematics: challenging eurocentrism in mathematics education (pp. 61-82). Albany, New York, USA: State University of New York.
- Knijnik, G. (1997). An ethnomathematical approach in mathematics education: a matter of political power. En Arthur B. Powell y Marilyn Frankenstein (Eds.), Ethnomathematics: challenging eurocentrism in mathematics education (pp. 403-410). Albany, New York, USA: State University of New York.
- Marcus, J. (1993). Mesoamerican writing systems: propaganda, myth and history in four ancient mesoamerican civilizations. Princeton, New Jersey, USA: Princeton University Press.
- Martin, B. (1977). Mathematics and social interests. En Arthur B. Powell y Marilyn Frankenstein (Eds.), Ethnomathematics: challenging eurocentrism in mathematics education (pp. 155-172). Albany, New York, USA: State University of New York.
- Oliveras, M. L. (1996). Etnomatemáticas. Formación de profesores e innovación cultural. Granada, España: Comares.
- Ortiz-Franco, L. (1977). Seleted study on mathematical word problem-solving processes. Tesis de doctorado, Stanford University, USA.
- Ortiz-Franco, L. (1990). Interrelationship of seven mathematical abilities across languages. Journal of Hispanic Behavioral Sciences 12 (3), 299-312.
- Ortiz-Franco, L. (1993). Chicanos have math in their blood: pre-columbian mathematics. Radical Teacher 43, 10-14.
- Ortiz-Franco, L. (2002). The aztec number system, algebra, and etnomathematics. En Judith E. Hankes y Gerald R. (Eds.), Changing the faces of mathematics: perspectives on indigenous people of NorthAmerica (pp. 237-250). Fast Reston, Virginia, USA: National Council of Teachers of Mathematics.
- Ortiz-Franco, L. & Magaña, M. (1973). La ciencia de los antiguos mexicanos: una bibliografia selecta. Aztlan: Chicano Journal of the Social Sciences and the Arts 4 (1), 195-205.
- Payne, E. & Closs, M. P. (1993). A survey of aztec numbers and their uses. En Closs, Michael P. (Ed.), Native American Mathematics (pp. 215-235). Austin, Texas, USA:University of Texas Press.
- Sanders, W. T. & Price, B. (1968). Mesoamerica: The evolution of a civilization. New York, USA: Random House.
- Schele, L. & Friedel, D. (1990). A forest of kings: the untold story of the ancient maya. New York, USA: William Morrow and Company.
- Soustelle, J. (1984). The olmecs: the oldest civilization of Mexico. Garden City, New York, USA: Double Day and Company, Inc (traducción del francés por Helen R. Lane).
- Stuart, G. E. (1993). New light on the olmec. National Geographic (pp. 88-115). Washington, DC, USA: National Geographic Society.
- Stuart, G. E. & Stuart, G. S. (1983). The mysterious maya. Washington, DC, USA: National Geographic Society.
- Vaillant, G. C. (1962). Aztecs of Mexico: origin, rise and fall of the aztec nation. Garden City, New York, USA: Double Day and Company.
- Zaslavsky, C. (1973). Africa counts: number and pattern in african culture. Brooklyn, New York, USA: Lawrence Hill Books.