Artículos
Vol. 26 No. 2 (2023): Julio
Learning functions as a process of progressive mathematization: high school students facing a didactic sequence on free fall
Universidad Autónoma del Estado de México, México
Instituto Politécnico Nacional, México
Abstract
This research examines how high school students understand and develop the concept of function through a didactic sequence that uses free fall as the phenomenon of study. Framed within Realistic Mathematics Education, the sequence fosters active learning and encourages the transition from informal to formal knowledge. The methodology includes stages of anticipation, experimentation, analysis using Tracker software, and algebraic formulation. This didactic design motivates students to move from an intuitive perception to an abstract and general understanding of functions. The results highlight students' progress in linking different representations of functions, whether graphical, algebraic, tabular, or descriptive. Using the Tracker tool was fundamental in supporting the visualization and analysis of the data. The research concludes that progressive mathematization and active learning are helpful for a comprehensive and versatile understanding of functions.
References
- Andrade, J. M. y Saraiva, M. J. (2012). Múltiplas representações: Um contributo para a aprendizagem do conceito de função. RELIME - Revista Latinoamerica de Investivación en Matemática Educativa, 15(2), 137-169. https://www.relime.org/index.php/relime/article/view/236/203
- Arzarello, F. y Robutti, O. (2004). Introduction. Approaching functions through motion experiments. Educational Studies in Mathematics, 57(3), 305-308. https://doi.org/10.1007/s10649-004-5933-4
- Best, M. y Bikner-Ahsbahs, A. (2017). The function concept at the transition to upper secondary school level: tasks for a situation of change. ZDM - Mathematics Education, 49(6), 865-880. https://doi.org/10.1007/s11858-017-0880-6
- Bloch, I. (2003). Teaching functions in a graphic milieu: what forms of knowledge enable students to conjecture and prove? Educational Studies in Mathematics, 52(1), 3-28. https://doi.org/10.1023/A:1023696731950
- Bressan, A., Gallego, M., Pérez, S. y Zolkower, B. (2016). Educación Matemática Realista. Bases teóricas [Manuscrito no publicado]. Grupo Patagónico de Didáctica de la Matemática. https://documen.site/download/educacion-matematica-realista-bases-teoricas_pdf
- Duval. R. (2006). Cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61(1-2), 103-131. https://doi.org/10.1007/s10649-006-0400-z
- Eisenberg, T. (2002). Functions and Associated Learning Difficulties. En D. Tall (Ed) Advanced Mathematical Thinking, pp.140–152. Springer. https://doi.org/10.1007/0-306-47203-1_9
- Falcade, R., Laborde, C. y Mariotti, M. A. (2007). Approaching functions: Cabri tools as instruments of semiotic mediation. Educational Studies in Mathematics, 66(3), 317-333. https://doi.org/10.1007/s10649-006-9072-y
- Freudenthal, H. (2002). Revisiting mathematics education. China lectures. Springer. https://doi.org/10.1007/0-306-47202-3
- Gravemeijer, K. (2007). Emergent modelling as a precursor to mathematical modelling. En W. Blum, P. L. Galbraith, H. W. Henn y M. Niss (Eds.), Modelling and applications in mathematics education. The 14th ICMI Study (pp. 137-144). Springer. https://doi.org/10.1007/978-0-387-29822-1_12
- Kaur, B., Wong, L. F. y Govindani, S. N. (2020). Graphing Linear Equations—A Comparison of the Opportunity-to-Learn in Textbooks Using the Singapore and the Dutch Approaches to Teaching Equations. En M. van den Heuvel-Panhuizen (Ed.), International Reflections on the Netherlands Didactics of Mathematics Visions on and Experiences with Realistic Mathematics Education (pp. 97-111). Springer. https://doi.org/10.1007/978-3-030-20223-1_7
- Ortega, M. y Puig, L. (2017). Using Modelling and Tablets in the Classroom to Learn Quadratic Functions. En G. A. Stillman, W. Blum y G. Kaiser (Eds.), Mathematical Modelling and Applications (pp. 565-575). Springer. https://doi.org/10.1007/978-3-319-62968-1_47
- Ortega, M., Puig, L. y Albarracin, L. (2019). The Influence of Technology on the Mathematical Modelling of Physical Phenomena. En G. A. Stillman y J. P. Brown (Eds.), Lines of Inquiry in Mathematical Modelling Research in Education. ICME-13 Monographs (pp. 161-177). Springer. https://doi.org/10.1007/978-3-030-14931-4_9
- Rodríguez-Gallegos, R. y Quiroz-Rivera, S. (2016). El papel de la tecnología en el proceso de modelación matemática para la enseñanza de las ecuaciones diferenciales. RELIME - Revista Latinoamericana de Investigación en Matemática Educativa, 19(1), 99-124. http://dx.doi.org/10.12802/relime.13.1914
- Sajka, M. (2003). A secondary school student’s understanding of the concept of function: A case study. Educational Studies in Mathematics, 53(3), 229-254. https://doi.org/10.1023/A:1026033415747
- Selter, C. y Walter, D. (2020). Supporting Mathematical Learning Processes by Means of Mathematics Conferences and Mathematics Language Tools. En M. van den Heuvel-Panhuizen (Ed.), International Reflections on the Netherlands Didactics of Mathematics Visions on and Experiences with Realistic Mathematics Education (pp. 229-254). Springer. https://doi.org/10.1007/978-3-030-20223-1_13
- Secretaría de Educación Pública (1999). Fichero de actividades didácticas Matemáticas. Educación Secundaria. SEP
- van den Heuvel-Panhuizen, M. (2020). Seen Through Other Eyes—Opening Up New Vistas in Realistic Mathematics Education Through Visions and Experiences from Other Countries. En M. Van Den Heuvel-Panhuizen (Ed.), International Reflections on the Netherlands Didactics of Mathematics Visions on and Experiences with Realistic Mathematics Education (pp. 1-20). Springer. https://doi.org/10.1007/978-3-030-20223-1_1