Artículos
Vol. 15 N.º 3 (2012): Noviembre
WORKING TOWARDS ALGEBRA: THE IMPORTANCE OF RELATIONAL THINKING
The University of Melbourne
Universidade Federal do ABC
-
Enviado
-
julho 14, 2023
-
Publicado
-
2012-09-05
Resumo
A Álgebra tornou-se um elemento essencial para o sucesso em matemática. Nossa argumentação neste artigo explica que os estudantes necessitam de sólidos fundamentos na educação básica e, desta forma, situálos em um melhor entendimento algébrico que esteja baseado em experiências prévias com operações numéricas, assim como com ideias - chaves de equivalência e de compensação. Estes fundamentos são amplamente descritos por meio da ideia de pensamento relacional. Neste estudo exploratório do pensamento matemático de estudantes de 7o e 8o anos no Brasil, encontramos evidências de que, quando os alunos resolvem sentenças numéricas por meio das quatro operações, a maior parte deles opta por métodos computacionais. E, quando são questionados para “mostrar” o pensamento relacional, a maior parte deles o faz, mas verificou-se que eles, claramente, precisam de suporte.
Referências
- ACARA, Australian Curriculum and Reporting Authority (2010). The Australian Curriculum: Mathematics. Sydney, Australia: ACARA.
- Britt, M. & Irwin, K. (2011). Algebraic thinking with and without algebraic representation: A pathway for learning. In J. Cai & E. Knuth (Eds.), Early Algebraization: A global dialogue from multiple perspectives (pp. 137-159). Heidelberg, Germany: Springer. DOI: 10.1007/978-3-642-17735-4
- Cai, J., Ng, S. & Moyer, J. C. (2011). Developing students’ algebraic thinking in earlier grades: Lessons from China and Singapore. In J. Cai & E. Knuth (Eds.), Early Algebraization: A global dialogue from multiple perspectives (pp. 25-41). Heidelberg, Germany: Springer.
- DOI: 10.1007/978-3-642-17735-4_3
- Carpenter, T. P. & Franke, M. L. (2001). Developing algebraic reasoning in the elementary school: Generalization and proof. In H. Chick, K. Stacey, J. Vincent & J. Vincent (Eds.), Proceedings of the 12th ICMI Study Conference: The Future of the Teaching and Learning of Algebra (Vol. 1, pp. 155-162). Melbourne, Australia: University of Melbourne.
- Carpenter, T. & Levi, L. (1999). Developing conceptions of algebraic reasoning in the primary grades. Paper presented at the Annual Meeting of the American Educational Research Association, Montreal, Canada.
- Cooper, T. & Warren, E. (2011). Year 2 to Year 6 students’ ability to generalize: Models, representations and theory for teaching and learning. In J. Cai & E. Knuth (Eds.), Early Algebraization: A global dialogue from multiple perspectives (pp. 187-214). Heidelberg, Germany: Springer. DOI: 10.1007/978-3-642-17735-4_12
- Fujii, T. (2003). Probing students’ understanding of variables through cognitive conflict problems: Is the concept of a variable so difficult for students to understand? In N. A. Pateman, B. J.
- Dougherty & J. Zilliox (Eds.), Proceedings of the 27th Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 49–65) Hawaii, U.S.A.: University of Hawaii.
- Fujii, T. & Stephens, M. (2001). Fostering understanding of algebraic generalisation through numerical expressions: The role of quasi-variables. In H. Chick, K. Stacey, J. Vincent & J. Vincent (Eds.), Proceedings of the 12th ICMI Study Conference: The Future of the teaching and
- learning of algebra (Vol. 1, pp. 258-264). Melbourne, Australia: University of Melbourne.
- Hart, K. M. (1981). Children’s understanding of Mathematics: 11-16. London, England: John Murray.
- Irwin, K. & Britt, M. (2005). The algebraic nature of students’ numerical manipulation in the New Zealand Numeracy Project. Educational Studies in Mathematics 58(2), 169-188.
- Jacobs, V., Franke, M., Carpenter, T., Levi, L. & Battey, D. (2007). Professional developing focused on children’s algebraic reasoning in elementary School. Journal for Research in Mathematics Education 38(3), 258–288.
- Katz, V.J. (Ed.). (2007). Algebra: Gateway to Technological Future. Washington, DC: The Mathematical Association of America.
- Kaput, J., Carraher, D. & Blanton, M. (Eds.) (2008). Algebra in the early years. Hillsdale, NJ, U.S.A.: Lawrence Erlbaum Associates and National Council of Teachers of Mathematics.
- Kieran, C. (1981). Concepts associated with the equality symbol. Educational Studies in Mathematics 12(3), 317-326.
- Lins, R., & Kaput, J. (2004). The early development of algebraic reasoning: The current state of the field. In K. Stacey, H. Chick, & M. Kendal (Eds.), The Future of the teaching and learning of algebra: The 12th ICMI Study, (pp.47-70). Boston, U.S.A.: Kluwer Academic Publishers. DOI:
- 1007/1-4020-8131-6_4
- Mason, J., Stephens, M., & Watson, A. (2009). Appreciating mathematical structure for all. Mathematics Education Research Journal 21(2), 10-32. DOI: 10.1007/BF03217543
- Ministério da Educação Brasil (1998). Parâmetros Curriculares Nacionais. Brasília: MEC/SEF. Recuperado el día 15 de Marzo de 2004: de http://www.mec.gov.br/sef/sef/pcn.shtm.
- Ministério da Educação Brasil (2000). Parâmetros Curriculares Nacionais: ensinomédio Brasília: MEC/SEMTEC. Recuperado el día 10 de Septiembre de 2009 de: http://portal.mec.gov.br/seb/ arquivos/pdf/ciencian.pdf
- Ministry of Education of People’s Republic of China (2001). Mathematics Curriculum Standards for Compulsory Education. Beijing, China: Beijing Normal University Press.
- Ministry of Education of People’s Republic of China (2011). Mathematics Curriculum Standards for Compulsory Education (2011 version). Beijing, China: Beijing Normal University Press.
- Molina, M., Castro E. & Ambrose, R. (2006). Trabajo con igualdades numéricas para promover pensamiento relacional. PNA 1(1), 31-46.
- Molina, M., Castro, E. & Mason, J. (2008). Elementary school students’ approaches to solving true/false number sentences. PNA 2 (2), 75-86.
- NCTM, National Council of Teachers of Mathematics (2006). Curriculum Focal Points for Prekindergarten through Grade 8 Mathematics: A Quest for Coherence. Reston, VA, U.S.A.: NCTM.
- Skemp, R. (1976). Relational understanding and instrumental understanding. Mathematics Teaching 77, 20-26
- Stephens, M. (2007). Students’ emerging algebraic thinking in the middle school years. In J. Watson & K. Beswick (Eds.), Proceedings of the 30th Annual Conference of the Mathematics Education Research Group of Australasia: Mathematics: Essential Research, Essential Practice
- (Vol. 2, pp. 678-687). Hobart, Australia: MERGA.
- Stephens, M. (2008). Some key junctures in relational thinking. In M. Goss, R. Brown & K. Makar (Eds.), Proceedings of the 31st annual conference of the Mathematics Education Group of Australasia: Navigating current and charting directions (Vol. 2, pp. 491-498). Brisbane,
- Australia: MERGA.
- Stephens, M., & Armanto, D. (2010)., How to Build Powerful Learning Trajectories for Relational Thinking in the Primary School Years. In L. Sparrow, B. Kissane & C. Hurst (Eds.), Proceedings of the 33rd Annual Conference of the Mathematical Education Research Group
- of Australasia: Shaping the Future of Mathematics Education (Vol. 2, pp. 523-530). Fremantle, Australia, MERGA.
- Stephens, M., & Wang, X. (2008). Investigating Some Junctures in Relational Thinking: A study of Year 6 and Year 7 Students from Australia and China. Journal of Mathematics Education 1(1), 28-39.
- Stephens, M., & Wang, X. (2009). Probing some key junctures in relational thinking: A study of Year 6 and Year 7 students from Australia and China. In R. Hunter, B. Bricknell & T. Burgess (Eds.), Proceeding of the 32nd Annual Conference of the Mathematics Education Group of
- Australasia: Crossing Divides (Vol. 2, pp. 499-506). Wellington, New Zealand: MERGA
Downloads
Não há dados estatísticos.